Augmented Reality to Guide MIS-TLIF Procedures

Sommer et al. (2022), in Neurospine

Products

Microscope Navigation, Elements Spine Curvature Correction, Elements SmartBrush Spine, Airo

Hospital / Authors

Department of Neurological Surgery, New York Presbyterian Hospital / Och Spine, New York, USA

Sommer, F.; Hussain, I.; Kirnaz, S.; Goldberg, J.L.; Navarro-Ramirez, R.; McGrath Jr, L.B.; Schmidt, F.A.; Medary, B.; Gadjradj, P.S.; Härtl. R.

Clinical Background

Transforaminal lumbar interbody fusion (TLIF) is an established surgical technique for the fusion of spinal motion segments through implantation of cages and/or bone grafts. It is performed either open or minimally-invasive (MIS) with increased use of image-guided navigation. Since common landmarks may not be easy to identify during MIS-TLIF, augmented reality (AR) can provide additional support by superimposing structures onto the surgeon's view in either a head's up display (HUD) or through microscope integration. Due its minimally invasiveness, the MIS-TLIF workflow is particularly suited to overlaying preoperatively defined landmarks which are transferred and fused to the updated intraoperative CT with AR to guide surgeons through the procedure.

Study Objectives

Aim of the study was to evaluate the applicability and benefits of AR-aided procedural workflow guidance by predefined landmarks for the tubular MIS-TLIF approach.

N = 10, prospective case series, single level

Results

- AR protocol was applicable and safely implemented in all cases with these landmarks sequentially marked:
 - Ipsilateral
 - Inferior medial edge of lamina
 - Pars interarticularis (Pars)
 - Superficial facet joint space
 - Pedicle of the caudal vertebra (IP)
 - Disc space
 - Contralateral pedicles
- 160.6 ± 31.9 min Ø procedure time
 → AR added Ø 1.72 ± 0.37 min
- Surgeons' subjective assessment:
 - Overlay precision perceived < 2 mm in all cases
 - Additional guidance by AR perceived as helpful
 - Subjective time advantage rated as "insignificant" in all cases
- Neurological outcomes improved while no complications occurred

Summary

- The application of AR enabled **reproducible workflow guidance** in tubular MIS-TLIF by identifying pre-planned surgical landmarks, thus providing step-by-step guidance through surgery. The subjective assessment proved that the **surgeons trusted the AR**
- AR injection **mitigated the problem of limited visibility** of anatomical landmarks
- **No procedural changes** were required with only minimal increase in total time
- Outlook: The ease in finding landmarks can potentially speed up the procedure, increase the surgeon's comfort and thus minimize fatigue-related errors, which in turn increases accuracy, especially in complex cases. AR can also aid in educational and training scenarios independent from the physical location